Nonnegative Factorization and The Maximum Edge Biclique Problem

نویسندگان

  • Nicolas Gillis
  • François Glineur
چکیده

Nonnegative Matrix Factorization (NMF) is a data analysis technique which allows compression and interpretation of nonnegative data. NMF became widely studied after the publication of the seminal paper by Lee and Seung (Learning the Parts of Objects by Nonnegative Matrix Factorization, Nature, 1999, vol. 401, pp. 788–791), which introduced an algorithm based on Multiplicative Updates (MU). More recently, another class of methods called Hierarchical Alternating Least Squares (HALS) was introduced that seems to be much more efficient in practice. In this paper, we consider the problem of approximating a not necessarily nonnegative matrix with the product of two nonnegative matrices, which we refer to as Nonnegative Factorization (NF) ; this is the subproblem that HALS methods implicitly try to solve at each iteration. We prove that NF is NP-hard for any fixed factorization rank, using a reduction to the maximum edge biclique problem. We also generalize the multiplicative updates to NF, which allows us to shed some light on the differences between the MU and HALS algorithms for NMF and give an explanation for the better performance of HALS. Finally, we link stationary points of NF with feasible solutions of the biclique problem to obtain a new type of biclique finding algorithm (based on MU) whose iterations have an algorithmic complexity proportional to the number of edges in the graph, and show that it performs better than comparable existing methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using underapproximations for sparse nonnegative matrix factorization

Nonnegative Matrix Factorization (NMF) has gathered a lot of attention in the last decade and has been successfully applied in numerous applications. It consists in the factorization of a nonnegative matrix by the product of two low-rank nonnegative matrices: M ≈ VW . In this paper, we attempt to solve NMF problems in a recursive way. In order to do that, we introduce a new variant called Nonne...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

The maximum edge biclique problem is NP-complete

We prove that the maximum edge biclique problem in bipartite graphs is NP-complete. A biclique in a bipartite graph is a vertex induced subgraph which is complete. The problem of finding a biclique with a maximum number of vertices is known to be solvable in polynomial time but the complexity of finding a biclique with a maximum number of edges was still undecided.

متن کامل

A continuous characterization of the maximum-edge biclique problem

The problem of finding large complete subgraphs in bipartite graphs (that is, bicliques) is a well-known combinatorial optimization problem referred to as the maximum-edge biclique problem (MBP), and has many applications, e.g., in web community discovery, biological data analysis and text mining. In this paper, we present a new continuous characterization for MBP. Given a bipartite graphG, we ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008